Determining the Orientation of Uniaxially Rotating Membrane Proteins Using Unoriented Samples: A 2H, 13C, and 15N Solid-State NMR Investigation of the Dynamics and Orientation of a Transmembrane Helical Bundle

Sarah D. Cady,† Catherine Goodman,‡ Chad D. Tatko,‡ William F. DeGrado,‡ and Mei Hong*†

* Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6059

Received January 15, 2007; E-mail: mhong@iastate.edu

Abstract: Membrane protein orientation has traditionally been determined by NMR using mechanically or magnetically aligned samples. Here we show a new NMR approach that abolishes the need for preparing macroscopically aligned membranes. When the protein undergoes fast uniaxial rotation around the bilayer normal, the 0°-frequency of the motionally averaged powder spectrum is identical to the frequency of the aligned protein whose alignment axis is along the magnetic field. Thus, one can use unoriented membranes to determine the orientation of the protein relative to the bilayer normal. We demonstrate this approach on the M2 transmembrane peptide (M2TMP) of influenza A virus, which is known to assemble into a proton-conducting tetrameric helical bundle. The fast uniaxial rotational diffusion of the M2TMP helical bundle around the membrane normal is characterized via 2H quadrupolar couplings, C–H and N–H dipolar couplings, 13C chemical shift anisotropies, and 1H T$_1$ relaxation times. We then show that 15N chemical shift anisotropy and N–H dipolar coupling measured on these powder samples can be analyzed to yield precise tilt angles and rotation angles of the helices. The data show that the tilt angle of the M2TMP helices depends on the membrane thickness to reduce the hydrophobic mismatch. Moreover, the orientation of a longer M2 peptide containing both the transmembrane domain and cytoplasmic residues is similar to the orientation of the transmembrane domain alone, suggesting that the transmembrane domain regulates the orientation of this protein and that structural information obtained from M2TMP may be extrapolated to the longer peptide. This powder-NMR approach for orientation determination is generally applicable and can be extended to larger membrane proteins.

Introduction

Orientation determination of membrane proteins by solid-state NMR traditionally requires mechanically or magnetically aligned proteins. A uniaxially aligned protein produces resolved spectra where the anisotropic frequency (chemical shift or dipolar coupling) reports the orientation of the molecule-fixed spin interaction tensor, from which the orientation of the protein can be obtained. However, this approach is constrained by the degree of alignment. Poor alignment can occur for many reasons: (i) the size of the protein may be too large; (ii) the protein–lipid molar ratio may be too high, which is important for achieving sufficient sensitivity but deleterious for alignment; (iii) the protein may be inherently membrane disruptive by causing curvature and nonlamellar phases. Often only a narrow set of lipids is conducive to alignment for a specific protein, thus the dependence of orientation on environmental parameters such as membrane thickness and membrane composition is difficult to study. These factors severely restrict the determination of membrane protein orientation.

It is thus desirable to develop alternative approaches for determining membrane protein orientation that do not require macroscopic alignment but instead use straightforward unoriented liposomes. We demonstrate here that this is possible as long as the membrane protein undergoes fast uniaxial rotational diffusion around the bilayer normal compared to the time scale of the NMR spin interactions. Under this condition, the protein orientation can be extracted with high precision using unoriented membranes and magic-angle spinning (MAS) or static experiments. The elimination of macroscopic alignment also increases the sample amount in the radiofrequency (rf) coil by removing the alignment media, giving higher sensitivity.

The M2 protein of the influenza A virus is a well-studied proton channel that initiates the release of the viral ribonuclear protein complex into the host cell, which is necessary for viral...
replication.5,6 The transmembrane domain of the M2 protein, M2TMP (residues 22–46), has been extensively studied by a number of biophysical techniques, including electrophysiological measurements,7,8 analytical ultracentrifugation,9,10 solid-state NMR,11,12 neutron diffraction,13 and molecular dynamics simulation.14–17 The results indicate that M2TMP has the essential characteristics of the intact protein: it forms tetrameric helical bundles with proton-conducting abilities in the lipid membrane.18 Cross and co-workers used glass-plate aligned membranes and 2D 15N correlation experiments to show that the helices in this tetrameric bundle are tilted by 38° ± 3°11 from the bilayer normal in DMPC bilayers. The availability of this information makes M2TMP an excellent model system to test the principle of orientation determination using powder samples. Moreover, the orientation of M2TMP has been measured in detail only in DMPC (14:0) bilayers. A more limited set of NMR data on M2TMP bound to DOPC bilayers, measured in detail only in DMPC (14:0), found an orientation similar to that in DMPC bilayers.19 This was interpreted to suggest that M2TMP orientation is an inherent property of the protein and is independent of the membrane thickness. However, a more recent EPR study of M2TMP bound to DLPC, DMPC, POPC, and DOPC bilayers suggested that the peptide orientation does change with the membrane thickness.20 Thus, further experiments are of interest to resolve this discrepancy.

Another issue investigated in the current paper is the role of a C-terminal helix in M2, which occurs just beyond the transmembrane helix. Previously, limited proteolysis of full-length M2 protein in micelles and CD spectroscopy were used to identify a cytoplasmic amphiphilic helix that follows the transmembrane helix in the sequence of M2.21 The C-terminal helix increases the stability of the tetramer (relative to a peptide spanning only the TM helix), and this cytoplasmic helix was also essential to obtain full proton channel activity when deletion mutants were expressed in oocytes.7 The role of this C-terminal segment in stabilizing the channel is currently not known. Originally, it was suggested that the cytoplasmic helix might have one of two orientations: in one model it formed an extension of the transmembrane helix, possibly explaining the increased stability of the tetramer. In a second model, the helix was proposed to lie parallel to the membrane surface, radiating out from the transmembrane helix bundle in a rosette-like structure with a radius of 35–40 Å.21 Subsequent solid-state NMR studies of the full-length M2 protein22 were more consistent with the rosette model, although there were also features in these experiments that were difficult to understand. Hydrogen–deuterium exchange data indicated that the amide NH groups of all residues in the transmembrane helix exchanged with solvent very rapidly, irrespective of whether they faced the phospholipid acyl chains or the transmembrane pore. By contrast, in the cytoplasmic helix the putative lipid-facing amides were found to exchange very slowly with the bulk water.22 However, because the studies were not conducted with site-specifically labeled proteins, there remained some ambiguity in the conclusions. Thus, in this paper, we include initial data on a 42-residue peptide including both the transmembrane and the cytoplasmic helix.

In this work, we first examine the rotational dynamics of the M2TMP helical bundle under different sample preparation conditions and in lipid bilayers of different thicknesses. Multiple NMR spin interactions, including 2H quadrupolar couplings, 13C chemical shift anisotropy (CSA), 1H–13C dipolar couplings, and 1H–15N rotational-frame relaxation time (T1P), are used to examine the amplitude and rate of M2TMP rotational diffusion. We then measure the 13N–1H dipolar couplings and 15N–1H CSA of site-specifically labeled M2TMP in unoriented membranes under MAS or static conditions. These anisotropic couplings are summarized in the same 2D correlation patterns—“PISA” wheels—as those obtained from oriented membrane samples. These powder PISA wheel spectra show that the orientation of M2TMP does depend on the lipid bilayer thickness: it decreases from 35° ± 3° in DLPC bilayers to 26° ± 3° in POPC bilayers. Finally, we show that the longer segment of the M2 protein encompassing both the transmembrane domain and cytoplasmic residues has the same orientation in DLPC bilayers as M2TMP, suggesting that the transmembrane domain regulates the orientation of the protein.

Materials and Methods

Peptides and Lipids. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) were obtained from Avanti Polar Lipids (Alabaster, AL). 13C-, 15N-, and 1H-labeled Leu and Val (Sigma) were FOMC-protected in house using standard methods.23 Other FOMC-protected amino acids were purchased from Sigma (Miamisburg, OH) and Cambridge Isotope Laboratories (Andover, MA).

The transmembrane domain (residues 22–46) of the M2 protein of the A/Δorn/307/72 (H3N2) influenza A virus (SSDPLVVAASIG-ILHLILWILDRL)24 was synthesized and purified by Primm Biotech (Cambridge, MA). These samples contain various site-specific 1H, 13C, 15N, and 1H labels. One sample contains an L38F mutation to allow a 4-19F label at the phenyl ring. This L38F variant is found in the Weybridge (FPVW27) strain of the influenza A virus24 and has similar biological activity as the Udon strain.25

\begin{itemize}
\end{itemize}
Membrane Sample Preparation. Peptide-containing membrane samples were prepared either by an aqueous-phase mixing method or by an organic-phase mixing method. The aqueous samples were prepared by mixing the peptide with pH 7.5 lipid vesicle solutions at a peptide/lipid molar ratio (P/L) of 1:15. The lipid solution was vortexed, freeze/thawed 6–8 times to create uniform vesicles of <200 nm diameter, and then added to the appropriate amount of M2TMP. The solution was incubated at 30 °C for 2 days, after which it was ultracentrifuged at 150000g for 3 h above the lipid main phase transition (Tm) temperature. The resulting pellet typically contained ~50% water by mass. UV–vis absorption and a photometric assay of the supernatant showed that ~98% of the peptide is bound to the pellet. The organic-phase mixed samples used P/L = 1:20 and were prepared by codissolving M2TMP with lipids in trifluoroethanol, drying the mixture with nitrogen gas, redissolving it in cyclohexane, lyophilizing, and then rehydrating to 50% water by mass using a phosphate buffer (pH 8.1). We refer to these two types of samples as “aqueous samples” and “organic samples”, even though the final products are both well-hydrated proteoliposomes.

Importantly, we have confirmed by independent 19F spin diffusion experiments that the oligomeric state of M2TMP is indeed tetramer at the peptide concentrations used here, whether the sample is prepared by aqueous-phase mixing or organic-phase mixing. This is manifested as an equilibrium value of ~0.25 at long spin diffusion mixing times. Thus, the mobility and orientation observed in this work are those of the tetrameric M2 peptide.

Solid-State NMR Spectroscopy. NMR experiments were carried out on a Bruker AVANCE-600 (14.1 T) spectrometer and a DSX-400 (9.4 T) spectrometer (Karlsruhe, Germany). The H experiments were carried out using a quadrupolar echo pulse sequence with a 19H 90° pulse length of 5 µs. Static 13C chemical shift spectra were measured using a Hahn-echo sequence. 13C–H and 15N–H dipolar couplings were measured using the 2D DISHIFT experiment30 by 2.4–3.5 kHz MAS with MREV-8 for 1H homonuclear decoupling. Pulse lengths of 3.5–5.2 µs were used in the MREV-8 pulse train, the longer values due to the rf power loss on some of the hydrated membrane samples. Tests on the model compound 15N-acetyl-valine indicate that the measured dipolar coupling is unaffected by the varying MREV-8 field strengths within the range used. The N–H DISHIFT experiments were performed with dipolar doubling31,32 to increase the precision of the measured couplings. The 13C chemical shift anisotropy (CSA) was measured using the 2D SUPER experiment11 under 2.5 kHz MAS. The corresponding 13C field strength was 30.3 kHz. 1H T1 values were measured using a spin-lock field strength of 62.5 kHz.

The 1H and 13C 1D spectra were recorded between 243 and 313 K. All 15N chemical shift and N–H dipolar coupling experiments were carried out at 313 K where the peptide is mobile to determine the helix orientation.

Results and Discussion

Equivalence of Aligned and Powder Samples for Uniaxially Mobile Molecules. For a membrane protein undergoing fast uniaxial rotational diffusion around the bilayer normal, the 0°-frequency, \(\tilde{\omega}_0 \), of the motionally average powder spectrum is identical to the frequency when the protein is uniformly aligned, with the alignment axis parallel to the magnetic field (0°-aligned sample):34

\[
\tilde{\omega}_0 = \omega_{\text{aligned}} = \frac{1}{2} \delta (3 \cos^2 \theta - 1 - \eta \sin^2 \theta \cos 2\phi + \omega_{\text{iso}})
\]

Here \(\delta = \delta_{zz} - \delta_{xx} \) and \(\eta = (\delta_{yy} - \delta_{xx})/\delta \) are the anisotropy and asymmetry parameters, respectively, of the rigid-limit interaction tensor. The angles \((\theta, \phi)\) are the polar coordinates of the magnetic field \(B_0\) in the principal axis system of the spin interaction tensor. Equation 1 can be derived, as we showed recently,34 by considering the frequency of an aligned sample without motion, then the frequency of an aligned sample undergoing uniaxial rotation around the alignment axis of bilayer normal, then the motionally averaged anisotropy parameter of the same aligned and mobile sample, and finally the powder spectrum of the mobile sample without alignment. The essential link between the frequency of a 0°-aligned sample and that of an unoriented sample is that \(\tilde{\omega}_0 \) of the motionally averaged powder pattern is obtained when \(B_0 \) is along the motional axis, the bilayer normal. This is identical to the geometry of a 0°-aligned sample, when \(B_0 \) coincides with the alignment axis, also the bilayer normal.

Once \(\tilde{\omega}_0 \) is known, the motionally averaged anisotropy parameter, \(\delta \), and the frequency of the powder pattern maximum, \(\tilde{\omega}_{\text{iso}} \), are also known, since these are related by:

\[
\tilde{\omega}_{\text{iso}} = \omega_{\text{aligned}} - \omega_{\text{iso}} = \frac{1}{2} (\tilde{\omega}_{\text{aligned}} - \omega_{\text{iso}}) + \frac{1}{2} \tilde{\omega}_{\text{iso}} = \frac{1}{2} \delta
\]

Thus, one can extract the orientation information by measuring the high-sensitivity \(\delta \) (90°) edge, rather than the low-intensity \(\tilde{\omega}_0 \) edge, of the uniaxially averaged spectrum.

Predicted Rates of Rotational Diffusion of Membrane Proteins. The prerequisite for this powder-sample orientation determination approach is that the membrane protein must undergo uniaxial rotational diffusion at a rate larger than the NMR spin interaction. The rotational diffusion rate of proteins in two-dimensional membranes is given by the Saffman–Delbrück equation:35

\[
D_r = \frac{kT}{4\pi
r^2 h}
\]

where the diffusion coefficient \(D_r \) is directly proportional to the temperature \(T \) and inversely proportional to the membrane viscosity \(\eta \), the square of the radius \(r \) of the diffusing cylinder, and the height \(h \) of the cylinder.

Equation 3 allows us to estimate the diffusion rates of membrane proteins of varying sizes. Figure 1 plots the calculated rotational diffusion rates \(D_r \) as a function of \(r \) at \(T = 298 \) K, with \(h = 19.5 \) Å for DLPC bilayers and 27 Å for POPC bilayers, and assuming a membrane viscosity of 10 poise.35 A single TM \(\alpha \)-helix, which has a radius of ~5 Å, gives a \(D_r \) of ~6.7 × 10^5

The resulting tetramer is estimated to have a radius of 4.7 Å, which is comparable to the 2 H quadrupolar coupling, C−H dipolar couplings, and 13 C chemical shift anisotropies for the aromatic side chains. The 2 H spectra in Figure 2 show different dynamics for a 26-residue α-helix. The spectra show a range of 2 H quadrupolar couplings from 13.8 to 16.0 kHz, indicating the presence of fast uniaxial rotation of this helical bundle.37 However, it is important to note that the fast uniaxial rotation relevant to orientation determination is the rotation of the entire helical bundle together around the membrane normal and that the individual helices do not rotate around their own molecular axes. That the bilayer normal is the motional axis is dictated by the two-dimensional nature of the membrane, which makes it more accessible to the external environment.

It is important to note that the fast uniaxial rotation relevant for orientation determination is the rotation of the entire helical bundle together around the membrane normal and that the individual helices do not rotate around their own molecular axes. That the bilayer normal is the motional axis is dictated by the two-dimensional nature of the membrane, which makes it more accessible to the external environment.

Figure 2. 2 H spectra of 5,5,5-2 H-L38-M2TMP in POPC membranes prepared via (a) organic mixing and (b) aqueous mixing at various temperatures. Quadrupolar splittings of the organic sample are 13.8, 15.0, and 16.0 kHz from top to bottom (a). Quadrupolar splittings of the aqueous sample are 26.0, 26.0, and 31.0 kHz from top to bottom (b).

3 H Spectra of M2TMP in Lipid Membranes: Conditions for Fast Uniaxial Rotation. Previous 15 N spectra of a glass-plate aligned M2TMP with the alignment axis perpendicular to the magnetic field showed narrow peaks that indicate the presence of fast uniaxial rotation of this helical bundle.35 However, whether this motion is fast on the time scales of larger spin interactions such as 2 H quadrupolar coupling is not known, and the rates and amplitudes of the motion have also not been characterized. We first measured the 2 H spectra of site-specifically deuterated M2TMP in various lipid membranes to provide a lower limit of the rotational diffusion rates. Figure 2 shows the 2 H spectra of 5,5,5-2 H-L38-M2TMP in POPC bilayers at several temperatures. In the Lα-phase of the membrane, the Leυ38 CD3 group experiences methyl three-site jumps, χ1 and χ2, torsional motion, and possible backbone motion. The methyl three-site jumps reduce the rigid-limit 2 H quadrupolar coupling to 40 kHz.38 Any further coupling reduction must be a result of the two other motional mechanisms.

The 2 H spectra in Figure 2 show different dynamics for different sample preparation conditions. For the organic sample (a), the spectra show 0 line shapes and couplings of <15 kHz in the Lα phase (Figure 2a). For the aqueous sample, the spectra show couplings of >25 kHz and non-uniaxial line shapes at the same temperatures. Mildly below the phase transition

temperature, the same trend is seen: organic mixing yielded a splitting of 16 kHz whereas aqueous mixing yielded a coupling of 31 kHz. Since χ_1 and χ_2 torsional motion is inherently non-uniaxial, the $\tilde{e}_z = 0$ line shape (Figure 2a) at high temperatures cannot be solely due to the side chain motion, but the helix backbone must undergo uniaxial rotation faster than the rigid-limit 2H quadrupolar coupling of 125 kHz. Moreover, since the backbone motion should have a higher energy barrier than side chain motion, the couplings of 26–31 kHz from the organic membrane mixture in which the tetrameric bundles are well isolated from each other. In contrast, the same trend is observed in the organic POPC membrane whereas the aqueous POPC sample showed strong signals that disappear between 288 and 298 K, then reappear above 313 K. The same trend is observed in the organic POPC membrane whereas the aqueous POPC sample showed strong signals that are independent of temperature (spectra not shown). The suppression of the 13C signals at intermediate temperatures in the organic samples is a classic signature that motions with similar rates as the C–H dipolar coupling and the 1H decoupling strength, 20,000–50,000 s$^{-1}$, are present. When this motion is either frozen or sped up by varying the temperature, the 13C signals reappear.

Motions with rates of 10^5 s$^{-1}$ are readily detectable in rotating-frame spin–lattice relaxation time (T_1) measurements. Figure 5a shows the 13C-detected L40 1H T_1 relaxation curves at various temperatures under a 1H spin-lock field of 62.5 kHz. In the aqueous POPC membrane, the peptide has a long 1H T_1 of >5 ms that is independent of the temperature between 298 and 313 K. In contrast, the organic DLPC sample gave much shorter and temperature-dependent 1H T_1 values. Above T_m, the 1H T_1 is only 0.8 ms whereas below T_m, the 1H T_1 increases to 3.45 ms at 258 K. Figure 5b plots the 1H T_1 of the lipid CH$_2$ and L40 1H in the two samples as a function of temperature. The lipid CH$_2$ groups show increasing T_1 with uniaxial rotation. Below T_m, between 243 and 262 K, the 2H spectra broaden to 32 kHz in the DLPC membrane and 39 kHz in the POPC membrane. The prediction that rotational diffusion should be slower in the thicker membrane (larger h) is confirmed by the larger quadrupolar couplings in the gel-phase POPC membrane at the same reduced temperature as the DLPC sample. In addition, the zero-frequency signal is more completely suppressed in POPC bilayers than in DLPC bilayers.

The fact that the M2TMP spectra in the Lα-phase are the same between DLPC and POPC membranes with different h suggests that as long as the rotational diffusion rate exceeds the coupling strength, it gives the same motionally averaged couplings, which depend only on the orientation of the spin interaction tensor, in this case the Cα-Cβ bond, with respect to the bilayer normal. Equation (1) indicates that an order parameter can be defined: $S = \delta /\delta_0 = \delta /40$ kHz, that is related to the angle θ of the Cα-Cβ bond relative to the bilayer normal as $S = (1/2)(3\cos^2\theta - 1)$. Thus, the measured splitting of 16 kHz in fluid DLPC and POPC membranes indicates a Cα-Cβ bond orientation of 39° (or 141°) for $S = +0.4$ or 75° (or 105°) for $S = -0.4$. The existing M2TMP tetramer model gives a Cα-Cβ bond orientation of 92°, in reasonable agreement with one of the predicted values (105°). However, this Ala Cα-Cβ constraint, while easy to obtain, is not very sensitive to the helix axis orientation because the Cα-Cβ bond is roughly perpendicular, rather than parallel, to the helical axis. It has been shown that multiple Ala CD$_3$ groups need to be measured to obtain accurate helix tilt angles.

Rates of M2TMP uniaxial rotational diffusion

We characterized the rotational diffusion rates of the M2TMP tetratetramers by 13C cross-polarization (CP) MAS spectra as a function of temperature. Figure 4 shows the 13C signals of L40 and G34 in DLPC membrane between 258 and 318 K. The sample was prepared by organic-phase mixing. The two Cα signals are strong below the phase transition temperature, disappear between 288 and 298 K, then reappear above 313 K. The same trend is observed in the organic POPC membrane whereas the aqueous POPC sample showed strong signals that are independent of temperature (spectra not shown). The suppression of the 13C signals at intermediate temperatures in the organic samples is a classic signature that motions with similar rates as the C–H dipolar coupling and the 1H decoupling strength, 20,000–50,000 s$^{-1}$, are present. When this motion is either frozen or sped up by varying the temperature, the 13C signals reappear.

Motions with rates of 10^5 s$^{-1}$ are readily detectable in rotating-frame spin–lattice relaxation time (T_1) measurements. Figure 5a shows the 13C-detected L40 1H T_1 relaxation curves at various temperatures under a 1H spin-lock field of 62.5 kHz. In the aqueous POPC membrane, the peptide has a long 1H T_1 of >5 ms that is independent of the temperature between 298 and 313 K. In contrast, the organic DLPC sample gave much shorter and temperature-dependent 1H T_1 values. Above T_m, the 1H T_1 is only 0.8 ms whereas below T_m, the 1H T_1 increases to 3.45 ms at 258 K. Figure 5b plots the 1H T_1 of the lipid CH$_2$ and L40 1H in the two samples as a function of temperature. The lipid CH$_2$ groups show increasing T_1 with

increasing temperature, indicating that they are in the fast motional limit in the temperature range examined (Figure 5c). The organic DLPC sample shows decreasing T_1 with increasing temperature, indicating that the peptide motion is near the minimum of the T_1 curve. Finally, the temperature-independence and long T_1 of the aqueous POPC sample indicates that M2TMP is in the slow motional limit.

Amplitudes of backbone motion from 13C-1H dipolar coupling and 13C CSA

Direct evidence of backbone motion can be obtained from Cs-Hα dipolar couplings and Cs CSAs. Figure 6 shows the L40 Cs-Hα dipolar coupling curves in three different samples obtained from the indirect dimension of the 2D DIPSHIFT spectra. In the aqueous POPC membrane, a coupling of 10.6 kHz was measured (Figure 6a). Taking into account the MREV-8 scaling factor (0.47), this corresponds to an unscaled coupling of 22.6 kHz, which is the rigid limit Cs-H dipolar coupling. In contrast, POPC and DLPC organic membranes (b, c) gave significantly reduced couplings of 3.4 kHz and 4.0 kHz, respectively, which correspond to order parameters of ± 0.32 and ± 0.37. The sign degeneracy, similar to the 2H quadrupolar interaction, is due to the uniaxial nature of the dipolar interaction. The negative S values indicate a Cs-Hα angle of 70° (110°) for POPC and 73° (107°) for DLPC with respect to the bilayer normal. The existing M2TMP structural model, obtained from experiments conducted on DMPC bilayers, gives a Cs-Hα orientation of 73° or 107° from the bilayer normal, in excellent agreement with the present data. The similarity of the two C-H couplings belies the fact that the helix orientation is detectably different between the two membranes, as we show by 15N experiments below. Again, this is a result of the roughly perpendicular orientation of the Cs-Hα bond to the helix axis, which makes it less sensitive than the N-H dipolar coupling to the helix tilt angle.

The same backbone uniaxial rotation also averages the Cs CSA, which can be measured under MAS using the recoupling experiment SUPER. Figure 7 shows the CSA spectra of L40 in various membranes, obtained from the indirect dimension of the 2D SUPER spectra. Only the organic DLPC sample in the liquid crystalline phase shows a motionally narrowed CSA ($\delta = 9.2$ ppm) while the gel-phase sample or aqueous samples gave CSAs of 18 ppm, which is the rigid-limit CSA of R-helical Leu predicted by quantum chemical calculations.

References:

To determine the orientation of α-helical peptides with high angular resolution, the most sensitive nuclear spin interactions are the 15N CSA, as both tensors are roughly parallel to the helix axis. The PISEMA experiment, commonly used for aligned samples, correlates these two spin interactions in a 2D spectrum, producing wheel-like patterns called “PISA wheels”. The size and frequency position of the PISA wheels depend on the tilt angle of the helices whereas the residue position on the wheel depends on the rotation angle around the helix axis.43,44 Figure 8a shows the calculated PISA wheels for tilt angles of 15°–45° for 0°-aligned membranes. The center of the wheels shifts toward lower frequencies in both dimensions as the tilt angle increases. When the alignment axis is perpendicular to the magnetic field, and the protein undergoes fast rotational diffusion, “90$^\circ$ PISA wheels” are obtained that are half-sized mirror images of the 0° PISA wheels (eq 2), reflected around the isotropic shift and zero dipolar coupling axis (Figure 8b). These 90$^\circ$ wheels have been observed in membrane proteins bound to “unflipped” bicelles.45

The presence of protein uniaxial rotation enables PISA wheels to be obtained from powder samples using MAS and static experiments. For example, N–H dipolar couplings can be measured in a site-specific fashion using the 2D DIPSHIFT46 or LG-CP47 experiments under MAS, giving the $\delta_{\|}$ frequency or 0° dipolar coupling. The 15N CSA can be obtained from the δ_{\perp} singularity of the static 15N spectra of site-specifically labeled samples or by CSA recoupling experiments under MAS on multiply labeled samples. When the 0° dipolar coupling is correlated with the 90$^\circ$ chemical shift, we obtain 0°/90$^\circ$ PISA wheels (Figure 8c). Whichever PISA wheels are used, multiple 15N-labeled residues are necessary to determine both the tilt and the rotation angles of the helix.

We demonstrate this powder orientation determination approach by measuring the 15$^\text{N}$ chemical shift and N–H dipolar couplings of site-specifically labeled M2TMP. Figure 9 shows static 15N spectra of M2TMP in DLPC and POPC organic membranes. L26, V28, and A30 were 15N-labeled to cover different rotational angles around the helix axis. Most spectra show well-defined $\delta_{\|}$ singularities, δ_{\perp} edges, and $\eta = 0$ lineshapes and a “magic-angle hole” at the isotropic shift.48 The exception is V28, whose δ_{\perp} singularity nearly

Figure 6. 13C–1H DIPSHIFT curves of 13C-α-L40 in M2TMP in different membrane samples. (a) POPC aqueous sample (P/L = 1:20). (b) POPC organic sample (P/L = 1:15). (c) DLPC organic sample (P/L = 1:15). The POPC aqueous sample (a) gave a rigid-limit 13C–1H dipolar coupling, whereas the two organic samples (b, c) have motionally averaged dipolar couplings.

Figure 7. 13C CSA spectra of the 13C-α-L40 in M2TMP in various membranes, extracted from the indirect dimension of 2D SUPER spectra. (a) DLPC organic sample at 318 K. (b) DLPC organic sample at 258 K. (c) DMPC aqueous sample at 310 K. (d) POPC aqueous sample at 298 K. Spectra (b–d) show rigid-limit CSAs, as simulated in (e). Spectrum (a) is the only one narrowed by fast backbone motion of the peptide.

coincides with the isotropic shift in various samples so that the magic-angle hole is not visible (Figure 9b, e, f). This indicates that the V28 main chemical shift tensor axis, which is near its N-H bond, is incidentally aligned near the magic angle with respect to the bilayer normal, so that the CSA tensor is motionally averaged to vanishing anisotropies. Also observed is a 6 ppm difference in the A30 \(\delta_1 \) frequency between DLPC and POPC bilayers (Figure 9c, d), indicating that the helix orientation differs between the two lipid bilayers.

Figure 10 shows the N-H dipolar-doubled DIPSHIFT curves of the same \(^{15}\)N labeled residues. A range of couplings from 2.6 kHz to 8.5 kHz is observed. After taking into account the dipolar doubling and MREV-8 scaling factor, we find unscaled couplings from 4.7 kHz to 9.0 kHz (Table 1). The rigid-limit one-bond N-H dipolar coupling is 10.5 kHz, thus these N-H bonds are variably tilted from the bilayer normal.

Figure 11 summarizes the N-H dipolar coupling and the \(\delta_1 \) chemical shift of A30, V28, and L26 in DLPC and POPC bilayers. Superimposed on the experimental data are the best-fit 0°/90° PISA wheels calculated using the ideal \(\alpha \)-helical geometry. The DLPC data (filled squares) are best fit to a 0°/90° PISA wheel of \(\theta = 35° \pm 3° \). The rotation angle, determined by the relative positions of the three sites on the wheel, is 105°, where \(\rho = 0° \) is defined by the Ser22 CO–Ser23 N peptide bond direction. With the same reference, the oriented-membrane \(^{15}\)N data gave a rotation angle of \(\sim 95° \). L26 shows an \(^{15}\)N chemical shift that falls outside the calculated 35° PISA wheel, but the measured N-H dipolar coupling is consistent with the predicted frequency for \(\tau = 35° \). This may result from a deviation of the \(^{15}\)N chemical shift tensor magnitude or orientation at this site from the literature value used in the simulation of the PISA wheel. Indeed, \(^{15}\)N chemical shift tensor variations in proteins can be significant, as shown by a recent study of the protein geometry.
GB1. Fortunately, the dipolar coupling information is intrinsically more accurate, which is the reason that N-H dipolar couplings only are used in the dipolar wave analysis for orientation determination. In POPC bilayers, the A30 and V28 data are best fit by a tilt angle of 26° (3° and the same rotation angles. The N-H dipolar couplings are significantly larger than those in DLPC bilayers, and the δ⊥ chemical shifts are further away from the isotropic chemical shift. Both indicate larger anisotropies, which shift the 0°/90° PISA wheels to a smaller tilt angle. Interestingly, as the PISA wheels become smaller, the tilt angle resolution improves; thus, although the rotation angle is defined only by two residues, the precision of the tilt angle is still high.

The comparison between the DLPC and POPC data indicates clearly that the M2TMP helix tilt angle is affected by the membrane thickness: increasing the membrane thickness decreases the tilt angle, as expected for the hydrophobic thickness of the peptide to match the hydrophobic thickness of the lipid bilayer. The similar rotation angle between the two membranes is also expected, since the residues facing the pore lumen must be maintained to carry out the proton-conducting function. Mutation of key channel-facing residues can destabilize the channel.

Figure 10. N-H dipolar-doubled DIPSHIFT curves of selected residues of M2TMP in DLPC and POPC bilayers. (a) A30 of L38F-M2TMP in POPC bilayers. (b) A30 of M2TMP in DLPC bilayers. (c) V28 of M2TMP in POPC bilayers. (d) V28 of M2TMP in DLPC bilayers. The DIPSHIFT curve of crystalline rigid N-acetyl-valine (NAV) is shown in (a) for comparison. The best-fit N-H dipolar coupling (bold solid lines) is indicated for each site. All spectra were measured at 513 K under 3.23 kHz MAS.

Table 1. 15N 90° Chemical Shifts (δN) and N-H Dipolar Couplings (δNH) of Several Residues in M2 Peptides in Various Lipid Membranes

<table>
<thead>
<tr>
<th>15N-labeled peptide</th>
<th>lipid bilayer</th>
<th>δN (ppm)</th>
<th>δNH (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L26, M2TMP</td>
<td>DLPC</td>
<td>78 ± 3</td>
<td>4.8</td>
</tr>
<tr>
<td>V28, M2TMP</td>
<td>DLPC</td>
<td>117 ± 4</td>
<td>2.8</td>
</tr>
<tr>
<td>V28, M2TMP</td>
<td>POPC</td>
<td>106 ± 4</td>
<td>6.3</td>
</tr>
<tr>
<td>V28, M2(19–60)</td>
<td>DLPC</td>
<td>123 ± 3</td>
<td>NA</td>
</tr>
<tr>
<td>A30, M2TMP</td>
<td>DLPC</td>
<td>87 ± 2</td>
<td>5.1</td>
</tr>
<tr>
<td>A30, L38F-M2TMP</td>
<td>POPC</td>
<td>81 ± 3</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Figure 11. Orientation of M2TMP using 0°/90° PISA wheels constructed from data collected from unoriented samples. The DLPC membrane results of A30, V28, and L26 are shown in filled squares and solid lines. The POPC membrane data are shown in open squares and dashed lines.
molecular distance between spin-labeled M2 helices changes bilayers supports a recent EPR study showing that the inter-to still depend on the membrane thickness. The current result the maximum achievable for this peptide while still maintaining 5 Å, and the P- distances are shown to scale. Red: hydrophobic residues. Blue: polar and charged residues. The tilt angle of M2TMP is 35° in DLPC bilayers and 26° in POPC bilayers.

between increasing the tilt angle to minimize the hydrophobic mismatch and the need to maintain channel stability through sufficient hydrophobic contacts between the residues on different helices. The similarity suggests that a tilt angle of 35°–38° is the maximum achievable for this peptide while still maintaining its tetrameric state.

Below this maximum tilt angle, M2TMP orientation appears to still depend on the membrane thickness. The current result that the peptide orientation differs between DLPC and POPC bilayers supports a recent EPR study showing that the inter-molecular distance between spin-labeled M2 helices changes with the membrane thickness. The previous observation by Cross and co-workers that the M2TMP orientation does not change significantly between DMPC and DOPC bilayers may be coincidental: DOPC lipids differ from DMPC lipids not only in the chain length but also in having a double bond in each chain, thus the lateral pressure of the two membranes differs. The unsaturated DOPC bilayer may laterally expand to adopt a similar thickness as the saturated DMPC bilayer, thus giving the same tilt angle for the M2 helices.

Figure 12 summarizes the orientation of M2TMP determined from the current study. M2TMP shows different tilt angles between DLPC and POPC bilayers. The P–P distances of the two membranes are ~30 Å and ~45 Å, respectively. The 25-residue M2TMP has a length of 37.5 Å if the ideal rise of 1.5 Å per residue is used. Thus a tilt angle of 35° and 26° yields, respectively, a vertical length of 31 Å and 34 Å, respectively. The former agrees well with the DLPC P–P distance, while the latter is shorter than the POPC P–P distance but closer to the average between the estimated POPC hydrophobic thickness of 27 Å and the P–P distance.

M2(19–60) Orientation from Powder Samples Using 15N NMR. Finally, we apply this powder orientation determination technique to a longer construct of the M2 protein, M2(19–60), whose orientation has not been determined before. This construct encompasses all the structured regions of the M2 protein and has been shown to be functional in oocytes. With a molecular weight of 4878, the M2(19–60) peptide would be more difficult to align than M2TMP. Figure 9e shows the static 15N spectrum of V28 in M2(19–60) bound to DLPC bilayers; a chemical shift of 123 ppm is observed, similar to the value found for M2TMP in the same membrane. Since the rotation angle of the protein is fixed, the similarity in the 15N CSA indicates that M2(19–60) has the same tilt angle as M2TMP within experimental uncertainty. This implies that structural conclusions made on the M2TMP helical bundle can be reasonably extrapolated to the longer peptide. Interestingly, the V28 15N line shape in M2-(19–60) is much narrower than in M2TMP, suggesting that the inclusion of the extra membrane residues creates a conformationally more homogeneous peptide.

Although a complete investigation of M2(19–60) is beyond the scope of the current paper, the data is quite interesting with respect to the role of the C-terminal helix in influencing the properties of the M2 proton channel. Previous studies of M2TMP suggested that the tetramer formed by this peptide had multiple conformations, some of which could be stabilized by specific mutations to its sequence. The decrease in heterogeneity in M2(19–60) versus M2TMP suggests that the C-terminal helix helps stabilize one or a small subset of conformations within the transmembrane helix. Furthermore, the C-terminal helix lies just C-terminal to, and structurally interacts with, the His537-Trp41 pair that forms the proton selectivity filter in M2. Thus, it might modulate the properties of this essential motif, which is known to be required for proton conduction. Finally, while we have not yet made measurements involving labeled residues in the C-terminal helix, it is clear that the present approach has considerable promise for examining the conformation of this region of the protein.

Conclusion

We have shown that, in the presence of fast uniaxial rotational diffusion, orientation-dependent PISA wheels in a 2D N–H/N correlation pattern can be obtained from unoriented membrane protein samples. This allows membrane protein orientation to be determined without macroscopic alignment, thus offering an important opportunity for studying membrane proteins that naturally disrupt lipid bilayers or that are difficult to align. In this work the M2TMP samples are studied under conditions where the peptide forms tetrameric helical bundles, as determined by separate 19F spin diffusion experiments. Thus, the observed fast uniaxial motion of the whole helical bundle, with a total molecular weight of 10.9 kDa, indicates that membrane proteins with an effective size smaller than 100 residues have the requisite uniaxial mobility to give orientation-dependent NMR spectra for interactions as large as the 2H quadrupolar coupling. However, since the spin interactions most sensitive to helix orientations are 15N-related tensors, the minimum required rotational diffusion rate is much lower (Figure 1), and membrane proteins with a radius as large as 30 Å should be accessible to this powder sample approach using 15N NMR. Further experiments are necessary to show whether fast uniaxial rotations compared to the 15N NMR time scale are indeed general in larger proteins. In addition to the protein molecular weight, the P/L ratio may also affect the uniaxial rotational rate. The motionally averaged spectra shown here were obtained from samples containing relatively high mass concentrations of peptide, ~20%. This suggests that it is not necessary to lower the protein concentration significantly to ensure motion. Instead, it is more important to maintain the protein or peptide assembly in their natural functional states without nonspecific aggregation.

Figure 12. Orientation of M2TMP helical bundles in membranes of different thicknesses. (a) DLPC bilayer. (b) POPC bilayer. The P–P boundaries of the bilayer are shown in orange. The peptide lengths and P–P distances are shown to scale. Red: hydrophobic residues. Blue: polar and charged residues. The tilt angle of M2TMP is 35° in DLPC bilayers and 26° in POPC bilayers.
as indicated by the dramatically different mobilities observed between the organically mixed and aqueous mixed M2TMP samples.

The powder samples allow MAS experiments to be used for orientation determination. Combining 13C and 15N labeling, one can in principle employ multidimensional correlation experiments to simultaneously extract multiple orientational constraints. While for demonstration we only measured site-specifically 15N-labeled samples here, the 2D N−H DIPSHIFT and 15N CSA filter experiments can be extended to three dimensions, where an additional 13C chemical shift dimension can be used to resolve multiple residues in the protein. The main challenge will be to conduct these experiments in the liquid-crystalline phase of the membrane where the protein is mobile, with motionally averaged dipolar couplings for polarization transfer.

Acknowledgment. We thank Tim Doherty for help with the synthesis of Fmoc-protected amino acids. This work is supported by NSF Grant MCB-0543473 to M.H. and NIH Grant GM56423 to W.F.D.

JA070305E