Medium- and Long-Distance 1H–13C Heteronuclear Correlation NMR in Solids

X. L. Yao, K. Schmidt-Rohr, and M. Hong

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received September 13, 2000; revised January 2, 2001

PULSE SEQUENCE

A simple method for obtaining 2H–13C HETCOR solid-state NMR spectra reflecting only medium- and long-range 1H–13C correlation peaks is presented. By dephasing the magnetization of protons directly bonded to a 13C nucleus, the short-range correlation peaks, which contain limited structural information, can be cleanly suppressed without reducing the long-range cross peaks significantly. The resulting reduction of resonance overlap simplifies spectral assignment. The dephasing of the intensity of a given peak in the HETCOR spectrum traces out a 1H–13C distance-dependent REDOR curve. This medium- and long-distance (MELODI) HETCOR experiment is demonstrated on a mixture of amino acids with 13C in natural abundance. It is useful for resonance assignment of proteins and other organic solids with partial or no 13C labeling.

INTRODUCTION

The correlation of 1H and 13C chemical shifts in solid-state NMR (1, 2) provides useful information on the structure of complex organic materials, including proteins (3), coals (4, 5), soil organic matter (6), and multicomponent polymers (7, 8). However, the information content of peaks correlating directly bonded protons and carbons is often trivial, given the limited 1H chemical shift resolution achievable in solids. Aromatic protons are bonded to aromatic carbons, aliphatic protons to aliphatic carbons, peptide α-protons to α-carbons, and so on. Structurally more revealing information is obtained from longer-range correlation peaks. These can be excited at longer 1H–13C coher-ence transfer times, but their identification is usually severely hampered by their overlap with the strong peaks of the directly bonded 1H–13C pairs. In this Communication, we present a simple method for suppressing the one-bond 1H–13C correlation peaks while retaining the medium- and long-range coupling signals. The experiment, termed MELODI-HETCOR for medium- and long-distance heteronuclear correlation, employs dephasing of 1H magnetization by the nearby 13C spin, and works for both CH and CH$_2$ groups. It is applicable to 13C-unlabeled materials or to selectively 13C-labeled systems.

1 To whom correspondence should be addressed. Fax: (515) 294-0105. E-mail: mhong@iastate.edu.
is no evolution at the H frequency. This more controlled CP method was used here. For instance, consider the case in which Hα has been suppressed through dephasing by Cα. Thus, there is no evolution at the H frequency. Subsequent transfer from Hβ to Hα to Cα during Hartmann–Hahn CP will not introduce any ωc signal at the Hα frequency. However, spin diffusion will lead to an enhancement of long-range peaks relative to medium-distance correlation peaks. If two- and three-bond correlations are specifically of interest, for example, for assignment based on chemical bonding, the more local Lee–Goldburg CP should be employed. This more controlled CP method was used here.

It is important to realize that the dephasing of the 1H magnetization by nearby 13C spins applies even to unlabeled systems, where the abundance of 13C is only 1.1% so that most protons have no 13C spin nearby. This is because every proton that is detected as a 1H–13C cross peak in a HETCOR spectrum is close to a 13C spin; from the other protons, no 13C signals are generated.

RESULTS AND DISCUSSION

13C–1H filter time dependence. Based on the standard C–H bond lengths and bond angles in organic solids, the two-bond 13C–1H dipolar coupling is about seven times weaker than the one-bond 13C–1H interaction. This makes it possible to suppress the magnetization of the one-bond 13C-coupled protons while retaining that of the more distant protons.

In principle, the dependence of the 13C–1H dephasing on the filter time period t1 can be determined by recording the intensity of a C–H correlation peak as a function of t1 in a series of 2D MELODI-HETCOR spectra. However, it is possible to determine this dephasing behavior much more efficiently from a series of 1D 13C spectra, obtained by applying the MELODI-HETCOR pulse sequence without the 1H chemical shift evolution period to a molecule with an isolated proton. We chose alanine-d6 for this purpose. Alanine-d6 contains only one proton (Hα) per molecule. Thus, in molecules containing a naturally occurring 13Cα spin, one-bond 13Cα–1Hα dephasing of the Hα magnetization can be observed by recording the 13Cα signal as a function of t1 in a series of 1D spectra. The dephasing of the Hα magnetization by the naturally abundant 13COO group two bonds away can be determined from the 13COO peak intensity in the same spectra. Figure 2 shows the experimental one-bond ($13\text{Cα–}^{1}\text{Hα}$) and two-bond ($13\text{CO–}^{1}\text{Hα}$) proton dephasing data as a function of t1. As expected, a dramatic difference between the one-bond and the two-bond intensities is observed.

The curves traced out by the data can be regarded as constant-time $13\text{C–}^{1}\text{H}$ REDOR (rotational-echo double resonance) curves (15). The C–H dipolar interaction is effectively quadrupled, since the phase acquired by the proton coherence under the action of the recoupled $13\text{C–}^{1}\text{H}$ dipolar coupling is $4\cdot\Phi(t_1)$ by the end of the two rotation periods (16). Since the homonuclear decoupling sequence reduces the 13C–1H dipolar coupling by a scaling factor κ_{FSLG}, the effective C–H dipolar coupling is given by

$$\delta_{\text{eff,CH}} = 4\kappa_{\text{FSLG}}\delta_{\text{CH}},$$

where δ_{CH} is the unscaled dipolar coupling constant, which is 22.7 kHz for a $13\text{C–}^{1}\text{H}$ bond length of 1.11 Å.

The intensity of the Cα peak reflects the dephasing of the Hα magnetization by the 13Cα spin. Since we detect only naturally occurring 13Cα spins, the Hα spins adjacent to a 12Cα nucleus are not observed in the spectra. In other words, all observed Hα spins are subject to the large one-bond $13\text{Cα–}^{1}\text{Hα}$ dipolar interaction ($\delta_{\text{CH}} = 22.7$ kHz) and their magnetization dephases...
significantly. Simulations indicate that the magnetization evolves under an effective dipolar coupling of $\delta_{\text{eff,CH}} = 48 \pm 5.0 \text{ kHz}$, which is equivalent to $\delta_{\text{CH}} = 21 \pm 2.2 \text{ kHz}$, if the theoretical FSLG scaling factor of 0.577 is assumed. Near $t_f = 16 \mu s$, the powder-averaged magnetization of the Hα spin directly bonded to a ^{13}C spin has its first zero-crossing, and its second zero-crossing occurs near $t_f = 40 \mu s$. These are suitable filter times for the MELODI-HETCOR experiment.

In contrast to the Cα–Hα spin pair, the intensity of the two-bond ^{13}C–Hα spin pair shows little C–H dipolar dephasing. The experimental intensity distribution can be simulated (Fig. 2) using an effective coupling of $\delta_{\text{eff,CH}} = 5.0 \pm 1.0 \text{ kHz}$. Using Eq. [1], this yields a C–H coupling of $\delta_{\text{CH}} = 2.2 \pm 0.43 \text{ kHz}$, which is in satisfactory agreement with the 2.4-kHz coupling calculated from the two-bond ^{13}CO–$^{1}\text{H}\beta$ distance of 2.14 Å.

The fit curves in Fig. 2 were obtained using REDOR powder simulations. The agreement is semiquantitative. The observed deviations, for example, near the center of the rotation period for the one-bond coupling, may be due to orientation-dependent ^{1}H–^{13}C cross-polarization efficiencies or result from partial orientation of crystallites in the rotor. For the MELODI-HETCOR experiment, these deviations are insignificant: only the zero-crossings and the difference between the one- and two-bond dephasing curves are of interest.

MELODI-HETCOR spectra. Figure 3a displays the 2D MELODI-HETCOR spectrum of a mixture of unlabeled valine and alanine. The spectrum was acquired at a spinning speed of 7576 Hz with 700 μs of LG-CP and a filter time $t_f = 34 \mu s$. This filter time was found to produce the best suppression of the one-bond peaks. The corresponding regular HETCOR spectrum is shown for reference in Fig. 3b. The signals of the directly bonded CH and CH$_2$ protons, most notably the Cα–Hα peaks of Val (Cα: 63.3 ppm) and Ala (Cα: 52.6 ppm), are cleanly suppressed in the...
MELODI-HETCOR spectrum. The 1H resonances in the Val Cβ cross section (32.8 ppm) show apparently reduced linewidths, since the signal of the directly bonded Hβ’s that overlap with the Hγ’s is suppressed. This demonstrates the resolution enhancement achieved by the one-bond 1H–13C dipolar filter. Various 1H cross sections are displayed in Fig. 3 to illustrate the suppression of the directly bonded C–H cross peaks. Note that the methyl proton signals of Val and Ala are only partially attenuated by the dipolar filtration, since their C–H couplings are reduced by a factor of 3 as a result of the methyl-group rotational jumps.

The MELODI-HETCOR experiment is particularly useful if the normal HETCOR spectrum is crowded and one-bond correlation peaks overlap with those of medium- and long-distance correlation. It is directly complementary to HETCOR experiments with short dipolar transfer (17) or with J-coupling-based transfer (18, 19), which exclusively give signals of directly bonded protons.

The two-bond cross-peak intensities such as Cα–Hβ in the filtered and unfiltered HETCOR spectra are expected to be similar. In both cases, the magnetization of the Hβ proton is not fully transferred to the protonated Cα carbon of interest. In the MELODI-HETCOR experiment, the Hβ magnetization (100%) is distributed over both the 13Ca spin (33% at equilibrium if the β segment is also a C–H group) and its directly bonded Hα (33% at equilibrium). This reduces the Cα–Hβ signal intensity compared to the case when Hα is absent; for example, if the Hα were replaced with a deuteron, the equilibrium magnetization of Cα would be 50%. In the unfiltered HETCOR experiment, half of the 13Ca magnetization originates from Hβ (33% at equilibrium) and half from Hα (33% at equilibrium). Note that the transfer from the two-bond Hβ to the directly bonded Hα does not produce an undesirable signal component at the Hα chemical shift in the MELODI-HETCOR spectrum.

It may be interesting to note that the dipolar filtering approach described here shares a similarity with proton-detected local field (20–23) experiments, since 1H rather than 13C magnetization is dephased. Dephasing of the 13C magnetization in the separated-local-field (24, 25) fashion would have a different and less useful effect, since it would remove the signals of all protonated carbons from the HETCOR spectrum, much like dipolar dephasing of 13C magnetization by gated decoupling (26).

It should be noted that the current one-bond suppression scheme is mostly not applicable to uniformly 13C-labeled molecules, because the magnetization of all protons other than N–H, O–H, and S–H protons would be dephased by the abundant 13C spins. However, selective and extensive 13C labeling schemes such as TEASE (27, 28) produce relatively isolated 13C spins and thus permit the application of the MELODI-HETCOR experiment to proteins.

CONCLUSION

The one-bond proton-dipolar-filtered MELODI-HETCOR experiment is a promising and robust approach for simplifying 1H–13C HETCOR spectra and for enabling more extensive resonance assignment and chemical structure identification. The signals of directly bonded protons are suppressed without significant intensity loss of the long-range correlation peaks. The dephasing of the intensity of a given peak traces out a 1H–13C REDOR curve, and the experimental data show semiquantitative agreement with the simulations. The MELODI-HETCOR approach is promising for structural characterizations of complex organic solids and for extending the limit of resonance assignment of selectively 13C-labeled solid proteins. Further developments, such as broadening the one-bond filter condition and suppressing both one- and two-bond proton signals, are in progress.

EXPERIMENTAL

Materials. The amino acids valine and alanine with 13C in natural abundance were obtained from Sigma and used without further purification; 53.2 mg of an equimolar mixture of alanine and valine was packed into the center of a 4-mm MAS rotor. Alanine-d_6 used for the filter time dependence study was prepared by dissolving 95% L-alanine-d_3 (C/D/N Isotopes, Inc., Vaudreuil, Canada) and 5% unlabeled L-alanine in 2H$_2$O for several hours and subsequent drying. The methyl-protonated L-alanine was added to reduce the recycle delay between experiments, by virtue of the fast methyl-proton T_1 relaxation and spin diffusion to Hα. A 60.2-mg sample of the mixture was packed in a 4-mm MAS rotor.

NMR experiments. All NMR experiments were carried out on a Bruker DSX-400 spectrometer (Karlsruhe, Germany) operating at a resonance frequency of 100.714 MHz for 13C and 400.497 MHz for 1H at room temperature ($T = 293 ± 1$ K). A double-resonance MAS probe equipped with a 4-mm spinning module was used. Frequency switching in the FSLG sequence was accomplished using a linear phase ramp (29). The phase ramp consists of a train of phase values incremented at 10° steps. A basic unit in the phase file consists of phase angles of 0°–210° and 300°–180°. The duration of each basic unit was synchronized with two 360° pulses around the FSLG effective field, which is tilted at the magic angle with respect to the magnetic field direction. The strength of the effective field was 90.9 kHz, which corresponded to a 11-µs 360° pulse. Lee–Goldburg cross polarization (17) was applied to suppress 1H–1H spin diffusion during the polarization transfer. A contact time of 700 µs and a 1H spin lock field strength of 44.7 kHz were used. The 1H decoupling field during the acquisition period was 74.2 kHz. The 1H 90° and 35° pulse lengths were 3.37 and 1.32 µs, respectively. The MAS spinning speed was 7576 ± 2 Hz, regulated by a Bruker spinning speed controller.

The filter time dependence experiment was carried out by incrementing the delay t_f from 4.16 to 112.5 µs with a step of 3.875 µs; 32 time points were measured. Note that t_f includes half the pulse length of the 8-µs 13C 180° pulse.
The C–H dipolar-modulated 1H dephasing curves as a function of the filter time were simulated using a Fortran program described earlier (16). The simulations were carried out for one rotation period, with the effective C–H dipolar coupling as the only adjustable parameter. Powder averaging was performed in 33 increments for all three Euler angles. Other input parameters were the spinning speed and the number of time domain points. Simulations were performed on a Macintosh G4 computer and analyzed using the MATLAB software.

ACKNOWLEDGMENTS

M.H. gratefully acknowledges the Arnold and Mabel Beckman Foundation for a Young Investigator Award and National Science Foundation for a POWRE award (MCB-9870373). K.S.-R. thanks the Alfred P. Sloan Foundation for a Sloan Fellowship. The authors thank W. Hu for the preparation of the alanine sample.

REFERENCES